Tabelle~4: Begriffsbestimmungen~f"ur~das~h"ochste,~das~gute~und~das~m"aβige~"okologische~Potential~von~erheblich~ver"anderten~oder~k"unstlichen~Gew"assern

Komponente	Sehr guter Zustand	Guter Zustand	Mäßiger Zustand
Biologische Qualitätskom- ponenten	Die Werte für die einschlägigen biologischen Qualitätskompo- nenten entsprechen unter Be- rücksichtigung der physikali- schen Bedingungen, die sich aus den künstlichen oder erheblich veränderten Eigenschaften des Gewässers ergeben, soweit wie möglich den Werten für den Oberflächengewässertyp, der am ehesten mit dem betreffenden Gewässer vergleichbar ist.		Die Werte für die einschlägigen biologischen Qualitätskomponenten weichen mäßig von den Werten ab, die für das höchste ökologische Potential gelten. Diese Werte sind in signifikanter Weise stärker gestört, als dies bei einem guten ökologischen Potential der Fall ist.
Hydromorphologische Komponenten	Die hydromorphologischen Bedingungen sind so beschaffen, dass sich die Einwirkungen auf das Oberflächengewässer auf die Einwirkungen beschränken, die von den künstlichen oder erheblich veränderten Eigenschaften des Gewässers herrühren, nachdem alle Gegenmaßnahmen getroffen worden sind, um die beste Annäherung an die ökologische Durchgängigkeit, insbesondere hinsichtlich der Wanderungsbewegungen der Fauna und angemessener Laich- und Aufzuchtgründe, sicherzustellen.	Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.	Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.
Physikalisch- chemische Komponenten			
Allgemeine Bedingungen	Die physikalisch-chemischen Komponenten entsprechen voll- ständig oder nahezu vollständig den Referenzbedingungen des Oberflächengewässertyps, der mit dem betreffenden künstli- chen oder erheblich veränderten Gewässer am ehesten vergleich- bar ist. Die Nährstoffkonzentrationen bleiben in dem Bereich, der nor- malerweise bei Vorliegen der Referenzbedingungen festzustel-	litätskomponenten gewährleistet sind. Die Werte für die Temperatur und der pH-Wert gehen nicht über den Bereich hinaus, innerhalb dessen die Funktionsfähig-	Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.
	len ist. Die Werte für die Temperatur und die Sauerstoffbilanz sowie der pH-Wert entsprechen den Werten, die bei Vorliegen der Referenzbedingungen in den Oberflächengewässertypen vorzufinden sind, die dem betreffenden Gewässer am ehesten vergleichbar sind.	keit des Okosystems und die Einhaltung der oben beschriebenen Werte für die biologischen Qualitätskomponenten gewährleistet sind. Die Nährstoffkonzentrationen gehen nicht über die Werte hinaus, bei denen die Funktionsfähigkeit des Ökosystems und die Einhaltung der oben beschriebenen Werte für die biologischen Qualitätskomponenten gewährleistet sind.	
Spezifische synthetische Schadstoffe	Konzentrationen nahe Null oder zumindest unter der Nachweis- grenze der allgemein gebräuch- lichen fortgeschrittensten Ana- lysetechniken. (Hintergrundwerte = bgl)	Konzentrationen nicht höher als die Umweltqualitätsnormen nach Anhang 4 Nr. 2, unbescha- det der Richtlinie 91/414/EWG und der Richtlinie 98/8/EG (<eqs).< td=""><td>Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.</td></eqs).<>	Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.
Spezifische nicht- synthetische Schadstoffe	Die Konzentrationen bleiben in dem Bereich, der normalerweise bei Vorliegen der Referenzbe- dingungen mit dem Oberflä- chengewässertyp einhergeht, der am ehesten mit dem betreffen- den künstlichen oder erheblich veränderten Gewässer ver- gleichbar ist.	Konzentrationen nicht höher als die Umweltqualitätsnormen nach Anhang 4 Nr. 2 ⁵ , unbeschadet der Richtlinie 91/414/EWG und der Richtlinie 98/8EG (<eqs).< td=""><td>Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.</td></eqs).<>	Bedingungen, unter denen die oben für die biologischen Quali- tätskomponenten beschriebenen Werte erreicht werden können.

⁵ Die Anwendungen der Umweltqualitätsnormen, die sich aus diesem Anhang ergeben, bedeutet nicht, dass die Schadstoffkonzentrationen so weit verringert werden müssen, dass sie unter den Hintergrundwerten liegen: (eqs>bgl).

2

Umweltqualitätsnormen für chemische Qualitätskomponenten zur Einstufung des ökologischen Zustands

Die in Nummer 1 Tabellen 2 bis 4 bei den Qualitätskomponenten "spezifisch synthetische Schadstoffe" und "spezifische nicht synthetische Schadstoffe" genannten Umweltqualitätsnormen ergeben sich aus nachstehender Tabelle. Die Umweltqualitätsnormen sind zu überwachen und einzuhalten, wenn die aufgeführten Stoffe in signifikanten Mengen in den Oberflächenwasserkörper eingetragen werden. Die Überprüfung der Umweltqualitätsnormen erfolgt anhand des arithmetischen Jahresmittelwerts für die jeweilige Messstelle. Der Jahresmittelwert wird wie folgt berechnet: Alle Werte kleiner Bestimmungsgrenze gehen in die Berechnung mit den jeweiligen Werten der halben Bestimmungsgrenze ein. Die Umweltqualitätsnormen gelten als eingehalten, wenn die Jahresmittelwerte die jeweiligen Umweltqualitätsnormen nicht überschreiten. Die Umweltqualitätsnorm ist auch dann eingehalten, wenn die Bestimmungsgrenze größer ist als das Qualitätsziel und der Jahresmittelwert kleiner als die Bestimmungsgrenze.

Tabelle: Chemische Qualitätskomponenten für Umweltqualitätsnormen zur Einstufung des ökologischen Zustands

EG-Nr.		QN WRRL	Einheit
2	2-Amino-4-Chlorphenol	10	μg/l
4	Arsen	40	mg/kg
5	Azinphos-ethyl	0,01	μg/l
6	Azinphos-methyl	0,01	μg/l
8	Benzidin	0,1	μg/l
9	Benzylchlorid (a-Chlortoluol)	10	μg/l
10	Benzylidenchlorid (a,a-Dichlortoluol)	10	μg/l
11	Biphenyl	1	μg/l
14	Chloralhydrat	10	μg/l
15	Chlordan (cis und trans)	0,003	μg/l
16	Chloressigsäure	10	μg/l
17	2-Chloranilin	3	μg/l
18	3-Chloranilin	1	μg/l
19	4-Chloranilin	0,05	μg/l
20	Chlorbenzol	1	µg/l
21	1-Chlor-2,4-dinitrobenzol	5	µg/l
22	2-Chlorethanol	10	μg/l
24	4-Chlor-3-Methylphenol	10	µg/l
25	1-Chlornaphthalin	1	µg/l
26	Chlornaphthaline (techn. Mischung)	0,01	µg/l
27	4-Chlor-2-nitroanilin	3	µg/l
28	1-Chlor-2-nitrobenzol	10	µg/l
29	1-Chlor-3-nitrobenzol	1	µg/l
30	1-Chlor-4-nitrobenzol	10	µg/l
31	4-Chlor-2-nitrotoluol	10	μg/l
(32)	2-Chlor-4-nitrotoluol	1	μg/l
(32)	2-Chlor-6-nitrotoluol	1	μg/l
(32)	3-Chlor-4-nitrotoluol	1	μg/l
(32)	4-Chlor-3-nitrotoluol	1	μg/l
(32)	5-Chlor-2-nitrotoluol	1	μg/l
33	2-Chlorphenol	10	μg/l
34	3-Chlorphenol	10	
35	4-Chlorphenol	10	µg/l
36	Chloropren	10	µg/l
37	3-Chlorpropen (Allylchlorid)	10	μg/l
38	2-Chlortoluol		µg/l
39		1	µg/l
40	3-Chlortoluol 4-Chlortoluol	10	µg/l
		1	µg/l
41	2-Chlor-p-toluidin	10	µg/l
(42)	3-Chlor-o-Toluidin	10	µg/l
(42)	3-Chlor-p-Toluidin	10	µg/l
(42)	5-Chlor-o-Toluidin	10	µg/l
43	Coumaphos	0,07	µg/l
44	Cyanurchlorid (2,4,6-Trichlor-1,3,5-triazin)	0,1	µg/l
45	2,4-D	0,1	μg/l
(47)	Demeton (Summe von Demeton-o und -s)	0,1	μg/l
(47)	Demeton-o	0,1	μg/l
(47)	Demeton-s	0,1	μg/l

EG-Nr.		QN WRRL	Einheit
(47)	Demeton-s-methyl	0,1	μg/l
(47)	Demeton-s-methyl-sulphon	0,1	μg/l
48	1,2-Dibromethan	2	μg/l
49-51	Dibutylzinn-Kation	100^{1}	μg/kg
(52)	2,4/2,5-Dichloranilin	2	μg/l
(52)	2,3-Dichloranilin	1	μg/l
(52)	2,4-Dichloranilin	1	μg/l
(52)	2,5-Dichloranilin	1	μg/l
(52)	2,6-Dichloranilin	1	μg/l
(52)	3,4-Dichloranilin	0,5	μg/l
(52)	3,5-Dichloranilin	1	μg/l
53	1,2-Dichlorbenzol	10	μg/l
54	1,3-Dichlorbenzol	10	μg/l
55	1,4-Dichlorbenzol	10	μg/l
56	Dichlorbenzidine	10	μg/l
57	Dichlordiisopropylether	10	µg/l
58	1,1-Dichlorethan	10	µg/l
60	1,1-Dichlorethen (Vinylidenchlorid)	10	μg/l
61	1,2-Dichlorethen	10	μg/l
(63)	1,2-Dichlor-3-nitrobenzol	10	µg/l
(63)	1,2-Dichlor-4-nitrobenzol	10	μg/l
(63)	1,3-Dichlor-4-nitrobenzol	10	μg/l
(63)	1,4-Dichlor-2-nitrobenzol	10	µg/l
64	2,4-Dichlorphenol	10	μg/l
65	1,2-Dichlorpropan	10	µg/l
66	1,3-Dichlorpropan-2-ol	10	µg/l
67	1,3-Dichlorpropen	10	µg/l
68	2,3-Dichlorpropen	10	µg/l
69	Dichlorprop	0,1	µg/l
70	Dichlorvos	0,0006	µg/l
72	Diethylamin	10	µg/l
73	Dimethoat	0,1	μg/l
74	Dimethylamin	10	μg/l
75	Disulfoton	0,004	μg/l μg/l
78	Epichlorhydrin	10	
79		10	µg/l
	Ethylbenzol		µg/l
80	Fenitrothion	0,009	µg/l
81	Fenthion	0,004	µg/l
(82)	Heptachlor	0,1	µg/l
(82)	Heptachlorepoxid	0,1	µg/l
86	Hexachlorethan	10	µg/l
87	Isopropylbenzol (Cumal)	10	µg/l
88	Linuron	0,1	µg/l
89	Malathion	0,02	µg/l
90	MCPA	0,1	µg/l
91	Mecoprop	0,1	µg/l
93	Methamidophos	0,1	µg/l
94	Mevinphos	0,0002	µg/l
95	Monolinuron	0,1	µg/l
97	Omethoat	0,1	µg/l
98	Oxydemeton-methyl	0,1	µg/l
(100)	Parathion-Ethyl	0,005	µg/l
(100)	Parathion-Methyl	0,02	µg/l
(101)	PCB-28	20^{2}	μg/kg
(101)	PCB-52	20^{2}	μg/kg
	PCB-101	20^{2}	μg/kg
(101) (101)	PCB-118	$\frac{20^{\circ}}{20^{\circ}}$	µg/kg

EG-Nr.		QN WRRL	Einheit
(101)	PCB-153	20^{2}	μg/kg
(101)	PCB-180	20^{2}	μg/kg
103	Phoxim	0,008	µg/l
104	Propanil	0,1	μg/l
105	Pyrazon (Chloridazon)	0,1	µg/l
107	2,4,5-T	0,1	μg/l
108	Tetrabutylzinn	403	μg/kg
109	1,2,4,5-Tetrachlorbenzol	1	μg/l
110	1,1,2,2-Tetrachlorethan	10	μg/l
112	Toluol	10	μg/l
113	Triazophos	0,03	μg/l
114	Tributylphosphat (Phosphorsäuretributylester)	10	μg/l
116	Trichlorfon	0,002	μg/l
119	1,1,1-Trichlorethan	10	μg/l
120	1,1,2-Trichlorethan	10	µg/l
(122)	2,4,5-Trichlorphenol	1	µg/l
(122)	2,4,6-Trichlorphenol	1	µg/l
(122)	2,3,4-Trichlorphenol	1	µg/l
(122)	2,3,5-Trichlorphenol	1	µg/l
(122)	2,3,6-Trichlorphenol	1	µg/l
(122)	3,4,5-Trichlorphenol	1	µg/l
123	1,1,2-Trichlortrifluorethan	10	µg/l
125-127	Triphenylzinn-Kation	20^{2}	μg/kg
128	Vinylchlorid (Chlorethylen)	2	µg/l
(129)	1,2-Dimethylbenzol	10	µg/l
(129)	1,3-Dimethylbenzol	10	µg/l
(129)	1,4-Dimethylbenzol	10	μg/l
132	Bentazon	0,1	μg/l
L.II	Ametryn	0,5	μg/l
L.II	Bromacil	0,6	µg/l
L.II	Chlortoluron	0,4	µg/l
L.II	Chrom	640	mg/kg
L.II	Cyanid	0,01	mg/l
L.II	Etrimphos	0,004	µg/l
L.II	Hexazinon	0,07	µg/l
L.II	Kupfer	160	mg/kg
L.II	Metazachlor	0,4	μg/l
L.II	Methabenzthiazuron	2,0	µg/l
L.II	Metolachlor	0,2	µg/l
L.II	Nitrobenzol	0,1	µg/l
L.II	Prometryn	0,5	µg/l
L.II	Terbuthylazin	0,5	µg/l
L.II	Zink	800	mg/kg

ersatzweise für die Wasserphase $0,01~\mu g/l$ ersatzweise für die Wasserphase 0,5~ng/lersatzweise für die Wasserphase $0,001~\mu g/l$